
sys socketcall: Network systems calls on Linux

Daniel Noé

April 9, 2008

The method used by Linux for system calls is explored in detail in Under-
standing the Linux Kernel. However, the book does not adequately describe
the idiosyncrasies of networking system calls. When the BSD Socket inter-
face was added to the kernel seventeen system calls were added at once. The
Linux programmers decided to use an additional level of indirection in order
to conserve system call numbers. This unusual technique remains in the
kernel in many architectures, including i386. Some newer architectures such
as x86 64 avoid the extra layer of indirection and use the same technique as
other system calls.

In this short article we will explore the sys socketcall system call
dispatch method. To match Understanding the Linux Kernel all examples
here are for Linux Kernel version 2.6.11 on the i386 architecture. We will
assume the reader is familiar with the standard system call mechanisms
on i386. As you may recall, the kernel contains a large jump table in
arch/i386/kernel/entry.S which maps system call numbers to functions.
By convention these functions begin with sys . But there are no sys socket
or sys bind or any other Berkeley Sockets API system calls listed directly
in this table.

When a user space library wishes to make a normal system call, it places
the corresponding system call number (0-228 currently) in the eax register,
then performs whatever action is required to switch to the kernel. On older
x86 systems this was done with the int 0x80 instruction. Newer systems
provide the sysenter instruction which is more efficient. Libraries generally
use the vsyscall mechanism, which allows the kernel to automatically select
the best entry mechanism. If the system call requires arguments, these are
passed in additional registers starting with ebx.

Socket calls use work differently. Instead of one system call per userspace
call, for socket calls everything is wrapped through the sys socketcall
function. This is defined in the entry.S jump table as system call 102. The

1



/* Argument list sizes for sys_socketcall */
#define AL(x) ((x) * sizeof(unsigned long))
static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),

AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};

#undef AL

Figure 1: Argument list sizes for sys socketcall

actual desired user space socket call number (in the range 1-17) is passed
in ebx. The socket call numbers are shown in Table 1 and are found in
linux/net.h. Any arguments given to the user space socket call are passed
using an “args” array of type unsigned long. The address of the first
element of this array is placed in ecx and a system call to sys socketcall
is made via the usual means.

The sys socketcall function is defined in net/socket.c and takes two
parameters: an integer call number and the unsigned long pointer “args”.
Via the normal system call convention, this function will be called with the
value from ebx in the first argument and ecx in the second. Four local stack
variables are declared in sys socketcall. The first is an unsigned long
array “a” of size 6. Two more unsigned long variables “a0” and “a1” are
also declared. Finally, an integer “err” is declared to hold return values (if
the return value is less than 0 it indicates an error and it is negated and
placed in errno by user space code).

The first thing sys socketcall does is to check if the call number passed
in ebx is reasonable. If it is less than 1 or more than SYS RECVMSG (17,
the highest call code numerically) then -EINVAL is returned (“Invalid argu-
ment”). Next, the arguments array is copied from user space to kernel space
using the copy from user() function. The arguments to this function are
the kernel stack array a, the user space array args and the number of bytes
to copy.

In order to determine the number of bytes to pass as the third argument
of copy from user(), the code consults the static unsigned char array
called nargs[], shown in Figure 1. This array is constructed with the help
of a macro AL(x) which returns x times the size of an unsigned long. The
nargs array contains one entry for each socket call code. It is initialized
using the AL macro with the number of unsigned long arguments of each
socket call, respectively. This way the nargs array contains the number of
bytes in the userspace arguments array for each socket call. The nargs array

2



Userspace function Call code (from linux/net.h) Kernel function
socket() SYS SOCKET sys socket()
bind() SYS BIND sys bind()

connect() SYS CONNECT sys connect()
listen() SYS LISTEN sys listen()
accept() SYS ACCEPT sys accept()

getsockname() SYS GETSOCKNAME sys getsockname()
getpeername() SYS GETPEERNAME sys getpeername()
socketpair() SYS SOCKETPAIR sys socketpair()

send() SYS SEND sys send()
sendto() SYS SENDTO sys sendto()
recv() SYS RECV sys recv()

recvfrom() SYS RECVFROM sys recvfrom()
shutdown() SYS SHUTDOWN sys shutdown()
setsockopt() SYS SETSOCKOPT sys setsockopt()
getsockopt() SYS GETSOCKOPT sys getsockopt()
sendmsg() SYS SENDMSG sys sendmsg()
recvmsg() SYS RECVMSG sys recvmsg()

Table 1: Mappings from switch(call) in net/socket.c:
sys socketcall()

is subscripted with the socket call number in order to pass the number of
bytes to copy from user(). See Figure 1 for a listing. Notice that the AL
macro is undefined after it is used to avoid polluting the namespace.

The next operation is to copy the a[0] and a[1] values into the a0 and
a1 variables. I’m not exactly sure what the point of this is, since it simply
provides a different way to refer to these argument values. It may be there in
order to provide a hint to the compiler that the first two arguments should
be placed into registers.

Finally, sys socketcall enters a large switch statement. It contains
one case for each of the seventeen socket call codes listed in Table 1. There
is also a default case, but this should never be reached since the call code
was already checked before the copy was performed. Each case of the switch
statement calls the appropriate kernel function with the correct number of
arguments from the a array. The return value of the function is placed in
err, which is returned at the end of the switch statement.

Note that the sys socketcall abstraction described here is not used on

3



struct sockaddr {
sa_family_t sa_family; /* address family, AF_xxx */
char sa_data[14]; /* 14 bytes of protocol address */

};

Figure 2: struct sockaddr defined in linux/socket.h

all architectures. There is a #ifdef ARCH WANT SYS SOCKETCALL which
disables the definition of sys socketcall and the nargs static array if the
architecture elects to directly call the functions from Table 1 instead of
using sys socketcall. Note that certain architectures such as x86 64 define
this macro even though they don’t seem to be using the sys socketcall
mechanism. I think this is because the sys socketcall code is used for ia32
compatibility routines in the kernel (for example, 32 bit binaries running on
a 64 bit install).

One major data structure is commonly seen in the socket system calls.
It is struct sockaddr, seen in Figure 2. What seems to be a very simple
structure is in fact a placeholder for something much more complex (those
used to fancy abstract programming interfaces may even say sinister!). In
order to allow the socket system calls to operate on a diverse array of differ-
ent protocols, the first field of the struct sockaddr is a short int which
represents the address family.

These address families are defined as macros in linux/socket.h. Some
of them are well known and common (AF INET), some haven’t come of age
yet (AF INET6), and the sun is setting on some (AF SNA, maintained by the
Linux SNA Project, which socket.h describes as “nutters!”). By reading
the first two bytes of the struct sockaddr the address family and thus
address format can be determined. This means the same socket interface
can be used for many different network protocols.

The sa data field of the structure is marked as 14 bytes, but it doesn’t
have to be. For example, an IPv6 address is 16 bytes alone, even without
additional information required for the socket (such as the port). Typically
an address family specific structure such as sockaddr in is allocated and
populated. This is then cast to a struct sockaddr and passed to the socket
system call. The receiving end peeks at the first two bytes of the structure
and then knows that the struct sockaddr is really a particular protocol
specific structure. It can then perform a cast to access the struct sockaddr
as the protocol specific structure.

This technique seems rather ugly at first glance when compared to mod-

4



ern object-oriented techniques but there is a certain simplicity to it. It also
keeps data compact, which improves cache locality. The only issue is that
the casting must be performed manually, and this means it is easy to shoot
yourself in the foot. For example, the struct sockaddr itself does not have
enough space to fit an IPv6 address (but it does have enough for IPv4). It
is necessary to allocate space for the larger structure required by IPv6 if
you wish to use the same allocation for both IPv6 and IPv4 addresses. The
consequences of trying to put an IPv6 address into a 14 byte structure will
likely be severe and difficult to debug.

The sys socketcall interface provides an interesting look into the his-
torical development of the Linux kernel. It is hardly necessary to do this
kind of indirection out of an attempt to conserve system calls. There have
certainly been numerous system calls added since sys socketcall yet the
kernel is not close to running out. Yet, the sys socketcall interface re-
mains. It provides negligible overhead and changing the interface would
require changes to system libraries. This small example of kernel engineer-
ing will remain in the kernel for a long time.

5


